The C-Terminus of Histone H2B Is Involved in Chromatin Compaction Specifically at Telomeres, Independently of Its Monoubiquitylation at Lysine 123

نویسندگان

  • Chen-Yi Wang
  • Chia-Yin Hua
  • Hsiang-En Hsu
  • Chia-Ling Hsu
  • Hsin-Yi Tseng
  • Duncan E. Wright
  • Pang-Hung Hsu
  • Chih-Hung Jen
  • Chia-Yeh Lin
  • Meng-Ying Wu
  • Min-Daw Tsai
  • Cheng-Fu Kao
چکیده

Telomeric heterochromatin assembly in budding yeast propagates through the association of Silent Information Regulator (SIR) proteins with nucleosomes, and the nucleosome array has been assumed to fold into a compacted structure. It is believed that the level of compaction and gene repression within heterochromatic regions can be modulated by histone modifications, such as acetylation of H3 lysine 56 and H4 lysine 16, and monoubiquitylation of H2B lysine 123. However, it remains unclear as to whether or not gene silencing is a direct consequence of the compaction of chromatin. Here, by investigating the role of the carboxy-terminus of histone H2B in heterochromatin formation, we identify that the disorderly compaction of chromatin induced by a mutation at H2B T122 specifically hinders telomeric heterochromatin formation. H2B T122 is positioned within the highly conserved AVTKY motif of the αC helix of H2B. Heterochromatin containing the T122E substitution in H2B remains inaccessible to ectopic dam methylase with dramatically increased mobility in sucrose gradients, indicating a compacted chromatin structure. Genetic studies indicate that this unique phenotype is independent of H2B K123 ubiquitylation and Sir4. In addition, using ChIP analysis, we demonstrate that telomere structure in the mutant is further disrupted by a defect in Sir2/Sir3 binding and the resulting invasion of euchromatic histone marks. Thus, we have revealed that the compaction of chromatin per se is not sufficient for heterochromatin formation. Instead, these results suggest that an appropriately arrayed chromatin mediated by H2B C-terminus is required for SIR binding and the subsequent formation of telomeric chromatin in yeast, thereby identifying an intrinsic property of the nucleosome that is required for the establishment of telomeric heterochromatin. This requirement is also likely to exist in higher eukaryotes, as the AVTKY motif of H2B is evolutionarily conserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Nucleosome Acidic Patch Regulates the H2B K123 Monoubiquitylation Cascade and Transcription Elongation in Saccharomyces cerevisiae

Eukaryotes regulate gene expression and other nuclear processes through the posttranslational modification of histones. In S. cerevisiae, the mono-ubiquitylation of histone H2B on lysine 123 (H2B K123ub) affects nucleosome stability, broadly influences gene expression and other DNA-templated processes, and is a prerequisite for additional conserved histone modifications that are associated with...

متن کامل

The ubiquitin-selective chaperone Cdc48/p97 associates with Ubx3 to modulate monoubiquitylation of histone H2B

Cdc48/p97 is an evolutionary conserved ubiquitin-dependent chaperone involved in a broad array of cellular functions due to its ability to associate with multiple cofactors. Aside from its role in removing RNA polymerase II from chromatin after DNA damage, little is known about how this AAA-ATPase is involved in the transcriptional process. Here, we show that yeast Cdc48 is recruited to chromat...

متن کامل

Yin and Yang of histone H2B roles in silencing and longevity: a tale of two arginines.

In budding yeast, silent chromatin is defined at the region of telomeres, rDNA loci, and silent mating loci. Although the silent chromatin at different loci shows structural similarity, the underlying mechanism to establish, maintain, and inherit these structures may be fundamentally different. In this study, we found two arginine residues within histone H2B, which are specifically required to ...

متن کامل

Cellular aging is associated with increased ubiquitylation of histone H2B in yeast telomeric heterochromatin.

Epigenetic changes in chromatin state are associated with aging. Notably, two histone modifications have recently been implicated in lifespan regulation, namely acetylation at H4 lysine 16 in yeast and methylation at H3 lysine 4 (H3K4) in nematodes. However, less is known about other histone modifications. Here, we report that cellular aging is associated with increased ubiquitylation of histon...

متن کامل

Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8.

Gene activation and repression regulated by acetylation and deacetylation represent a paradigm for the function of histone modifications. We provide evidence that, in contrast, histone H2B monoubiquitylation and its deubiquitylation are both involved in gene activation. Substitution of the H2B ubiquitylation site at Lys 123 (K123) lowered transcription of certain genes regulated by the acetylat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011